Rolle's Theorem and the Mean Value Theorem

For a non-constant function on an interval $[a, b]$, if we know that the function is continuous and differentiable and it starts and finishes at the same y-value, it is clear that there must be at least one turning point somewhere in the interval.

Rolle's Theorem: For a function, $f(\boldsymbol{x})$, that is continuous on an interval $[a, b]$ and differentiable on the interval (a, b), if $f(a)=f(b)$ then there must exist some point, $c \in(a, b)$ such that $f^{\prime}(c)=0$.

Continuity is important because we could have a function, say $f(x)=\frac{x^{2}-x-3}{x-2}$ for which $f(a)=f(b)$ but there is no $c \in(a, b)$ such that $f^{\prime}(c)=0$.

We also need differentiability because we could have a continuous function that does not have a turning point, for example $f(x)=1+|x-2|$.

The most common application of Rolle's Theorem is to establish the maximum number of roots of a polynomial.

EXAMPLE: Prove that the polynomial $f(x)=x^{3}+3 x^{2}+6 x+1$ has exactly one root.

By the Intermediate Value Theorem, if sign of the value of the function changes from negative to positive or from positive to negative, there must be a value in that interval where $f\left(x_{0}\right)=0$.

$$
\begin{aligned}
& f(-1)=-3<0 \\
& f(1)=11>0
\end{aligned}
$$

Since all polynomials are continuous, there must exist an $x_{0} \in(-1,1)$ such that $f\left(x_{0}\right)=0$, therefore $f(x)$ has at least one root.

We now need to show that there is only one root, so suppose there are two and look for a contradiction.
If there existed an $X_{1}>x_{0}$, then $f\left(x_{0}\right)=f\left(x_{1}\right)=0$ which meets the conditions of Rolle's Theorem, that the function is continuous on an interval $[a, b]$ and differentiable
on the interval (a, b), if $f(a)=f(b)$ then there must exist some point, $c \in(a, b)$ such that $f^{\prime}(c)=0$.

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2}+6 x+6 \\
& 3\left(x^{2}+2 x+2\right)=0 \\
& b^{2}-4 a c=4-8=-4<0
\end{aligned}
$$

Therefore, there are no real roots of the derivative and we have a contradiction. There is only one real root, \boldsymbol{X}_{0}.

EXAMPLE: Given $f(x)=\cos (2 x)+2 \cos x, 0 \leq x \leq 2 \pi$, use Rolle's Theorem to show that the equation $f^{\prime}(x)=0$ has at least one solution on the interval $] 0,2 \pi[\equiv(0,2 \pi)$ (The notation $][$ means an open, rather than closed, interval endpoints not included in the interval). Hence, find all the solutions to $f^{\prime}(x)=0$ on $] 0,2 \pi[$ and verify your answer with your GDC.

First verify the conditions of Rolle's Theorem, $f(x)$ is differentiable and continuous on the interval $] 0,2 \pi[$.

Also,

$$
\begin{aligned}
& f(0)=\cos (2 \cdot 0)+2 \cos 0=1+2=3 \\
& f(2 \pi)=\cos (2 \cdot 2 \pi)+2 \cos 2 \pi=1+2=3
\end{aligned}
$$

so $f(0)=f(2 \pi)$.
By Rolle's Theorem, there is at least one $x \in] 0,2 \pi\left[\right.$ such that $f^{\prime}(x)=0$

$$
\begin{aligned}
& f^{\prime}(x)=-2 \sin (2 x)-2 \sin x=0 \\
& -2(\sin (2 x)+\sin x)=0 \\
& 2 \sin x \cos x+\sin x=0 \\
& \sin x(2 \cos x+1)=0 \\
& \sin x=0, x=\pi \\
& \cos x=-\frac{1}{2}, x=\frac{2 \pi}{3}, x=\frac{4 \pi}{3}
\end{aligned}
$$

Rolle's Theorem is important because it easily allows us to prove a fundamental result: The Mean Value Theorem (MVT).

Mean Value Theorem: Let f be a function that is continuous on $] a, b[$ and differentiable on $] a, b[$. Then, there is at least one $\boldsymbol{X} \in] a, b[$ such that $f^{\prime}(x)=\frac{f(b)-f(a)}{b-a}$.

Proof of MVT:

Consider the linear function $h(x)=\frac{f(b)-f(a)}{b-a}(x-a)$ and the function $g(x)=f(x)-h(x)$. Because $f(x)$ was already identified as a function that is continuous and differentiable and $h(x)$ is a linear function that is always continuous and differentiable, $g(x)$ is also continuous and differentiable.

$$
\begin{aligned}
& g(a)=f(a)-\frac{f(b)-f(a)}{b-a}(a-a)=f(a) \\
& g(b)=f(b)-\frac{f(b)-f(a)}{b-a}(b-a)=f(b)-(f(b)-f(a))=f(a) \\
& g(b)=g(a)
\end{aligned}
$$

Therefore, by Rolle's Theorem there exists some point, $c \in(a, b)$ such that $f^{\prime}(c)=0$.

$$
\begin{aligned}
& g^{\prime}(c)=f^{\prime}(c)-\frac{f(b)-f(a)}{b-a}=0 \\
& f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
\end{aligned}
$$

There are a number of applications of the MVT.
EXAMPLE: Prove that $|\sin a-\sin b| \leq|a-b|$.
Since $f(x)=\sin (x)$ is continuous and differentiable for all values of x, by the Mean Value Theorem there exists $c \in(a, b)$ such that $\frac{f(b)-f(a)}{b-a}=f^{\prime}(c)$.

$$
\begin{aligned}
& \frac{\sin (b)-\sin (a)}{b-a}=\cos (c) \\
& \left|\frac{\sin (b)-\sin (a)}{b-a}\right|=|\cos (c)| \leq 1 \\
& \Rightarrow|\sin a-\sin b| \leq|a-b|
\end{aligned}
$$

Note that $|a-b|=|b-a|$

EXAMPLE: Show that $\sqrt{1+h}<1+\frac{h}{2}$ for any $h>0$.
Given $h>0$, let $f(x)=\sqrt{1+x}, 0 \leq x \leq h . f(x)$ is continuous on $] 0, h[$ and $f(x)$ is differentiable on $] 0, h[$.

$$
f^{\prime}(x)=\frac{1}{2 \sqrt{1+x}}, 0<x<h
$$

By the MVT, there is at least one value of $x \in] 0, h[$ such that

$$
f^{\prime}(x)=\frac{f(h)-f(0)}{h-0} \Rightarrow \frac{1}{2 \sqrt{1+x}}=\frac{\sqrt{1+h}-1}{h}
$$

$$
\begin{aligned}
& f^{\prime}(x)>0 \\
& x \in I \subseteq D_{f} \\
& f(x)=g(x)+c \\
& {[a, b]} \\
& 0=f^{\prime}(x)=\frac{f(b)-f(a)}{b-a} \Rightarrow f(b)=f(a) \\
& 0<x<h \Rightarrow 1+x>1 \Rightarrow \sqrt{1+x}>1 \\
& \frac{1}{\sqrt{1+x}}<1 \Rightarrow \frac{1}{2 \sqrt{1+x}}<\frac{1}{2} \\
& \therefore \frac{\sqrt{1+h}-1}{h}<\frac{1}{2} \Rightarrow \sqrt{1+h}-1<\frac{1}{2} h \Rightarrow \sqrt{1+h}<1+\frac{1}{2} h
\end{aligned}
$$

EXAMPLE: If $f(x)$ is such that $f(2)=-4$ and $f(x) \geq-2$ for all $x \in] 2,7[$, find the smallest possible value for $f(7)$.

Since the derivative exists for all $\boldsymbol{x} \in] 2,7[$, we know that $f(x)$ is differentiable and hence continuous. By the Mean Value Theorem, there exists some $C \in] 2,7[$ such that

$$
\begin{aligned}
&\left.f^{\prime}(c)=\frac{f(7)-f(2)}{7-2} \text {. Since } f(x) \geq-2 \text { for all } x \in\right] 2,7[\\
& \frac{f(7)-f(2)}{5} \geq-2 \\
& f(7)+4 \geq-10 \\
& f(7) \geq-14
\end{aligned}
$$

so, the smallest possible value for $f(7)=-14$.

EXAMPLE: A car driving along the highway and travelling below the speed limit of 70 mph passes a police officer at 12:00. At 12:20, the car passes another police officer 24 miles down the road; again, it was travelling at less than 70 mph . The driver is pulled over by the policeman, a math major in college, and given a ticket.

Use the MVT to show how the police officer knew that the driver had exceeded the speed limit during his journey.

Let $f(t)$ be the function that gives the car's position at time t hours after 12:00.

Assuming this function to be continuous and differentiable, by the MVT, there is a time, t_{0} at which

$$
\begin{aligned}
& f^{\prime}\left(t_{0}\right)=\frac{f(1 / 3)-f(0)}{1 / 3-0} \\
& \frac{24-0}{1 / 3}=72
\end{aligned}
$$

However, $f^{\prime}\left(t_{0}\right)$ is the car's velocity at some time t_{0} so at some time during his journey, the car must have been travelling at 72 mph .

Corollaries to the Mean Value Theorem

Corollary 1: If $f^{\prime}(x)=0$ for all $x \in I \subseteq D_{f}$ (all x are members of the set $/$ which is a proper subset of all of the elements in the domain of f), then f is constant on the interval I.

Proof: Consider any two points $a<b$ in I on the interval [a, b]. Then,

$$
0=f^{\prime}(x)=\frac{f(b)-f(a)}{b-a} \Rightarrow f(b)=f(a)
$$

Thus, the function is constant on I.

Corollary 2: If $f^{\prime}(x)=g^{\prime}(x)$ for all $x \in I \subseteq D_{f} \cap D_{g}$, then $f(x)=g(x)+c$
Corollary 3: If $f^{\prime}(x)>0$ for all $x \in I \subseteq D_{f}$, then f is increasing on the interval I.

Proof: Consider any two points $a<b$ in I on the interval $[a, b]$.

$$
f^{\prime}(x)=\frac{f(b)-f(a)}{b-a}>0 \Rightarrow f(b)-f(a)>0 \Rightarrow f(b)>f(a)
$$

Therefore for any two values $b>a \Rightarrow f(b)>f(a)$, meaning that f is increasing on the interval I.

Corollary 4: If $f^{\prime}(x)<0$ for all $x \in I \subseteq D_{f}$, then f is decreasing on the interval I.

