DIFFERENTIAL EQUATIONS

Worksheet A

1 Find the general solution of each differential equation.

- **a** $\frac{dy}{dx} = (x+2)^3$ **b** $\frac{dy}{dx} = 4\cos 2x$ **c** $\frac{dx}{dt} = 3e^{2t} + 2$ **d** $(2-x)\frac{dy}{dx} = 1$ **e** $\frac{dN}{dt} = t\sqrt{t^2 + 1}$ **f** $\frac{dy}{dx} = xe^x$
- 2 Find the particular solution of each differential equation.
 - **a** $\frac{dy}{dx} = e^{-x}$, y = 3 when x = 0 **b** $\frac{dy}{dt} = \tan^3 t \sec^2 t$, y = 1 when $t = \frac{\pi}{3}$ **c** $(x^2 - 3)\frac{du}{dx} = 4x$, u = 5 when x = 2**d** $\frac{dy}{dx} = 3\cos^2 x$, $y = \pi$ when $x = \frac{\pi}{2}$
- 3 **a** Express $\frac{x-8}{x^2-x-6}$ in partial fractions.
 - **b** Given that

C4

$$(x^2 - x - 6) \frac{\mathrm{d}y}{\mathrm{d}x} = x - 8,$$

and that $y = \ln 9$ when x = 1, show that when x = 2, the value of y is $\ln 32$.

- 4 Find the general solution of each differential equation.
 - a $\frac{dy}{dx} = 2y + 3$ b $\frac{dy}{dx} = \sin^2 2y$ c $\frac{dy}{dx} = xy$ d $(x+1)\frac{dy}{dx} = y$ e $\frac{dy}{dx} = \frac{x^2 - 2}{y}$ f $\frac{dy}{dx} = 2\cos x \cos^2 y$ g $\sqrt{x} \frac{dy}{dx} = e^{y-3}$ h $y\frac{dy}{dx} = xy^2 + 3x$ i $\frac{dy}{dx} = xy\sin x$ j $\frac{dy}{dx} = e^{2x-y}$ k $(y-3)\frac{dy}{dx} = xy(y-1)$ l $\frac{dy}{dx} = y^2 \ln x$

5

Find the particular solution of each differential equation.

- **a** $\frac{dy}{dx} = \frac{x}{2y}$, y = 3 when x = 4 **b** $\frac{dy}{dx} = (y+1)^3$, y = 0 when x = 2 **c** $(\tan^2 x)\frac{dy}{dx} = y$, y = 1 when $x = \frac{\pi}{2}$ **d** $\frac{dy}{dx} = \frac{y+2}{x-1}$, y = 6 when x = 3 **e** $\frac{dy}{dx} = x^2 \tan y$, $y = \frac{\pi}{6}$ when x = 0**f** $\frac{dy}{dx} = \sqrt{\frac{y}{x+3}}$, y = 16 when x = 1
- **g** $e^x \frac{dy}{dx} = x \operatorname{cosec} y$, $y = \pi$ when x = -1 **h** $\frac{dy}{dx} = \frac{1 + \cos y}{2x^2 \sin y}$, $y = \frac{\pi}{3}$ when x = 1

© Solomon Press

C4 DIFFERENTIAL EQUATIONS

- 6 A quantity has the value N at time t hours and is increasing at a rate proportional to N.
 - **a** Write down a differential equation relating N and t.
 - **b** By solving your differential equation, show that

 $N = A e^{kt}$

where *A* and *k* are constants and *k* is positive.

Given that when t = 0, N = 40 and that when t = 5, N = 60,

- **c** find the values of A and k,
- **d** find the value of *N* when t = 12.
- 7 At time t = 0, a piece of radioactive material has mass 24 g. Its mass after t days is m grams and is decreasing at a rate proportional to m.
 - a By forming and solving a suitable differential equation, show that

$$m = 24e^{-kt}$$
,

where *k* is a positive constant.

After 20 days, the mass of the material is found to be 22.6 g.

- **b** Find the value of *k*.
- c Find the rate at which the mass is decreasing after 20 days.
- d Find how long it takes for the mass of the material to be halved.
- 8 A quantity has the value P at time t seconds and is decreasing at a rate proportional to \sqrt{P} .
 - **a** Write down a differential equation relating *P* and *t*.
 - **b** By solving your differential equation, show that

$$P = (a - bt)^2$$

where *a* and *b* are constants.

- Given that when t = 0, P = 400,
- **c** find the value of *a*.

Given also that when t = 30, P = 100,

d find the value of *P* when t = 50.

9 **a** Express $\frac{1}{(1+x)(1-x)}$ in partial fractions.

In an industrial process, the mass of a chemical, m kg, produced after t hours is modelled by the differential equation

$$\frac{\mathrm{d}m}{\mathrm{d}t} = k\mathrm{e}^{-t}(1+m)(1-m),$$

where *k* is a positive constant.

Given that when t = 0, m = 0 and that the initial rate at which the chemical is produced is 0.5 kg per hour,

- **b** find the value of k,
- **c** show that, for $0 \le m < 1$, $\ln\left(\frac{1+m}{1-m}\right) = 1 e^{-t}$.
- **d** find the time taken to produce 0.1 kg of the chemical,
- e show that however long the process is allowed to run, the maximum amount of the chemical that will be produced is about 462 g.