C4 Differential Equations

1 Find the general solution of each differential equation.
a $\frac{\mathrm{d} y}{\mathrm{~d} x}=(x+2)^{3}$
b $\frac{\mathrm{d} y}{\mathrm{~d} x}=4 \cos 2 x$
c $\frac{\mathrm{d} x}{\mathrm{~d} t}=3 \mathrm{e}^{2 t}+2$
d $(2-x) \frac{\mathrm{d} y}{\mathrm{~d} x}=1$
e $\frac{\mathrm{d} N}{\mathrm{~d} t}=t \sqrt{t^{2}+1}$
f $\frac{\mathrm{d} y}{\mathrm{~d} x}=x \mathrm{e}^{x}$

2 Find the particular solution of each differential equation.
a $\frac{\mathrm{d} y}{\mathrm{~d} x}=\mathrm{e}^{-x}$,
$y=3$ when $x=0$
b $\frac{\mathrm{d} y}{\mathrm{~d} t}=\tan ^{3} t \sec ^{2} t, \quad y=1$ when $t=\frac{\pi}{3}$
c $\left(x^{2}-3\right) \frac{\mathrm{d} u}{\mathrm{~d} x}=4 x, \quad u=5$ when $x=2$
d $\frac{\mathrm{d} y}{\mathrm{~d} x}=3 \cos ^{2} x, \quad y=\pi$ when $x=\frac{\pi}{2}$

3 a Express $\frac{x-8}{x^{2}-x-6}$ in partial fractions.
b Given that

$$
\left(x^{2}-x-6\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=x-8
$$

and that $y=\ln 9$ when $x=1$, show that when $x=2$, the value of y is $\ln 32$.
4 Find the general solution of each differential equation.
a $\frac{\mathrm{d} y}{\mathrm{~d} x}=2 y+3$
b $\frac{\mathrm{d} y}{\mathrm{~d} x}=\sin ^{2} 2 y$
c $\frac{\mathrm{d} y}{\mathrm{~d} x}=x y$
d $(x+1) \frac{\mathrm{d} y}{\mathrm{~d} x}=y$
e $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x^{2}-2}{y}$
f $\frac{\mathrm{d} y}{\mathrm{~d} x}=2 \cos x \cos ^{2} y$
g $\sqrt{x} \frac{\mathrm{~d} y}{\mathrm{~d} x}=\mathrm{e}^{y-3}$
h $y \frac{\mathrm{~d} y}{\mathrm{~d} x}=x y^{2}+3 x$
i $\frac{\mathrm{d} y}{\mathrm{~d} x}=x y \sin x$
j $\frac{\mathrm{d} y}{\mathrm{~d} x}=\mathrm{e}^{2 x-y}$
k $(y-3) \frac{\mathrm{d} y}{\mathrm{~d} x}=x y(y-1)$
l $\frac{\mathrm{d} y}{\mathrm{~d} x}=y^{2} \ln x$

5 Find the particular solution of each differential equation.
a $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x}{2 y}$,
$y=3$ when $x=4$
b $\frac{\mathrm{d} y}{\mathrm{~d} x}=(y+1)^{3}$,
$y=0$ when $x=2$
c $\left(\tan ^{2} x\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=y$,
$y=1$ when $x=\frac{\pi}{2}$
d $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{y+2}{x-1}, \quad y=6$ when $x=3$
e $\frac{\mathrm{d} y}{\mathrm{~d} x}=x^{2} \tan y, \quad y=\frac{\pi}{6}$ when $x=0$
f $\frac{\mathrm{d} y}{\mathrm{~d} x}=\sqrt{\frac{y}{x+3}}, \quad y=16$ when $x=1$
g $\mathrm{e}^{x} \frac{\mathrm{~d} y}{\mathrm{~d} x}=x \operatorname{cosec} y, \quad y=\pi$ when $x=-1$
h $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1+\cos y}{2 x^{2} \sin y}, \quad y=\frac{\pi}{3}$ when $x=1$

6 A quantity has the value N at time t hours and is increasing at a rate proportional to N.
a Write down a differential equation relating N and t.
b By solving your differential equation, show that

$$
N=A \mathrm{e}^{k t},
$$

where A and k are constants and k is positive.
Given that when $t=0, N=40$ and that when $t=5, N=60$,
c find the values of A and k,
d find the value of N when $t=12$.
7 At time $t=0$, a piece of radioactive material has mass 24 g . Its mass after t days is m grams and is decreasing at a rate proportional to m.
a By forming and solving a suitable differential equation, show that

$$
m=24 \mathrm{e}^{-k t}
$$

where k is a positive constant.
After 20 days, the mass of the material is found to be 22.6 g .
b Find the value of k.
c Find the rate at which the mass is decreasing after 20 days.
d Find how long it takes for the mass of the material to be halved.
8 A quantity has the value P at time t seconds and is decreasing at a rate proportional to \sqrt{P}.
a Write down a differential equation relating P and t.
b By solving your differential equation, show that

$$
P=(a-b t)^{2},
$$

where a and b are constants.
Given that when $t=0, P=400$,
c find the value of a.
Given also that when $t=30, P=100$,
d find the value of P when $t=50$.
$9 \quad \mathbf{a}$ Express $\frac{1}{(1+x)(1-x)}$ in partial fractions.
In an industrial process, the mass of a chemical, $m \mathrm{~kg}$, produced after t hours is modelled by the differential equation

$$
\frac{\mathrm{d} m}{\mathrm{~d} t}=k \mathrm{e}^{-t}(1+m)(1-m),
$$

where k is a positive constant.
Given that when $t=0, m=0$ and that the initial rate at which the chemical is produced is 0.5 kg per hour,
b find the value of k,
c show that, for $0 \leq m<1, \ln \left(\frac{1+m}{1-m}\right)=1-\mathrm{e}^{-t}$.
d find the time taken to produce 0.1 kg of the chemical,
e show that however long the process is allowed to run, the maximum amount of the chemical that will be produced is about 462 g .

