
LIMITS AND IMPORTANT THEOREMS 
 

THE ALGEBRA OF LIMITS   
If the sequence {an} converges to a limit a and the sequence {bn} converges to a limit b, 
then: 
  
  

 
 
 
  
 
If the sequence {an} diverges, then for any constant   !!c∈!,(c ≠ 0)  
 

      
 
 
 
THE SQUEEZE THEOREM 
 
If we have sequences {an}, {bn},and {cn} such that !an
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In other words, if we can find two sequences that coverage to the same limit and 
squeeze another sequence between them, then that sequence must also converge to 
the same limit.  
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EXAMPLE USE THE SQUEEZE THEOREM TO FIND 
!!
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Start by bounding the sin n  !!−1≤ sinn≤1 
 

Then,    
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By the Squeeze Theorem  
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When using the Squeeze Theorem, it can be difficult to choose the sequences {an},and 
{cn}. Here is a common way of doing this. 
 

EXAMPLE: Show that 
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> 0  for all  !n∈!+  we are looking for a sequence that is always at least as 
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Start by writing the terms of the sequence by hand 
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For the limit of a function, f(x), to exist, the limit of the function from the right and from the 
left both have to exist and coincide for the limit to exist at that point. If they do then  
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EXAMPLE: Show that 
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If we can find two sequences, !xn and !yn  that tend to zero but for which 
!
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The sequence !!an
= 2π ,4π ,6π ,...,2nπ has !!cosan
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As for sequences, the Squeeze Theorem also holds true for functions. 
 



EXAMPLE Show that 
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So, by the Squeeze Theorem, 
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EXAMPLE of an Algebraic technique. 
 

Evaluate 
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