SET 1

1. For each of the following ordinary differential equations, state:
a) Whether they are linear or non-linear,
b) Their order,
c) Whether they have constant or variable coefficients

Equation $1 \quad y^{(3)}=6 y$
Equation $2 \quad\left(y^{\prime}\right)^{3}=6 y$
Equation $3 \quad y^{\prime \prime}-e^{x} y^{\prime}-y=0$
Equation $4 \quad\left(y^{\prime}\right)^{4}+5 y=4$
Equation $5 \quad \sin (x) y^{\prime}+2 x^{2} y=\cos (x)$
Equation $6 \quad e^{t} \frac{d v}{d t}=k t^{2}$
Equation $7 \quad \frac{d v}{d t}=k \frac{t}{v}$
2. Verify whether or not each function $y=f(x)$ is a solution of the given differential equation.
a) $y^{\prime}+y=0$ and $y=e^{-x}$
b) $\quad y^{\prime \prime}+y=0$ and $y=\sin (x)$
c) $y^{\prime}+y=e^{-x}$ and $y=x e^{-x}$
3. Show that the following equations define implicit solutions of the given differential equations.
a) $e^{x y}+x+y=0$ and $\frac{d y}{d x}=-\frac{1+y e^{x y}}{1+x e^{x y}}$
b) $x^{2}+y^{2}=r^{2}$ and $\frac{d y}{d x}=-\frac{x}{y}$

SET 2

1. Solve the following first order differential equations, with separated variables. Check your work by differentiating.
a) $\frac{d x}{d t}=t+t^{2}$
b) $\frac{d y}{d x}=\frac{1}{x}$
c) $\frac{d z}{d x}=x \cos (x)$
d) $\frac{d w}{d x}=x e^{2 x}$
2. Find the particular solution of the differential equation that satisfies the initial condition given:
a) $\frac{d y}{d x}=3 x+x^{2}$ and $y(1)=4$
b) $\frac{d y}{d x}=\frac{-x}{\sqrt{4-x^{2}}}$ and $y(0)=1$
3. A function f is a solution of the differential equation given by $\frac{d y}{d x}=\frac{1}{x+2}-\frac{1}{2} \sin (x)$ for $x \geq-1$. The graph of f passes through the point $(0,2)$. Find an expression for $f(x)$.
4. Show that $y=\sin (k x)-k x \cos (k x)$, where k is a constant, is a solution of the first order differential equation $\frac{d y}{d x}=k^{2} x \sin (k x)$.
5. Find the solution of the differential equation $\frac{d y}{d x}=e^{-2 x}-\frac{1}{x-1}, x<1$ that satisfies the initial condition $y(0)=1$.
6. A particle is projected along a straight line path. After t seconds, its velocity v metres per second is given by $v=\frac{1}{2+t^{2}}$. Find the distance travelled b the particle in the first t seconds.

SET 3

1. Find the particular solution of the following differential equations, giving your answer in the form $y=f(x)$ simplified as far as possible.
a) (i) $\frac{d y}{d x}=\frac{2 x^{2}}{3 y}, y=0$ when $x=0$
(ii) $\frac{d y}{d x}=4 x y^{2}, y=1$ when $x=0$
b) (i) $\frac{d y}{d x}=\frac{4 y}{x}, y=2$ when $x=1$
(ii) $\frac{d y}{d x}=-3 x^{2} y, y=3$ when $x=0$
2. Find the particular solution of the following differential equations. You do not need to give the expression for y explicitly.
a) (i) $\frac{d y}{d x}=\frac{\sin x}{\cos y}, y=0$ when $x=\frac{\pi}{3}$
(ii) $\frac{d y}{d x}=\frac{\sec ^{2} x}{\sec ^{2} y}, y=0$ when $x=\frac{\pi}{3}$
b) (i) $2(1+x) \frac{d y}{d x}=1+y^{2}, y=0$ when $x=0$
(ii) $\left(1+x^{2}\right) \frac{d y}{d x}=2 x \sqrt{1-y^{2}}, y=0$ when $x=0$
c) (i) $\frac{d y}{d x}=2 e^{x+2 y}, y=0$ when $x=0$
(ii) $\frac{d y}{d x}=e^{x-y}, y=2$ when $x=0$
3. Find the general solution of the following differential equations, giving your answer in the form $y=f(x)$ simplified as far as possible.
a) i) $2 y \frac{d y}{d x}=3 x^{2}$
(ii) $\frac{1}{y^{2}} \frac{d y}{d x}=2 x$
b) (i) $x \frac{d y}{d x}=\sec y$
(ii) $\csc x \frac{d y}{d x}=1+y^{2}$
c) (i)
$(x-1) \frac{d y}{d x}=x(y+3)$
(ii) $\left(1-x^{2}\right) \frac{d y}{d x}=x y+y$
4. Solve the differential equation $\frac{d y}{d x}=2 y(1-x)$ given that when $x=1, y=1$. Give your answer in the form $y=f(x)$ simplified as far as possible.
5. Given that $\frac{d N}{d t}=-k N$, where k is a positive constant, show that $N=A e^{-k t}$.
6. Find the general solution of the differential equation $x \frac{d y}{d x}-4=y^{2}$, giving your answer in the form $y=f(x)$.
7. Given that $\frac{d y}{d x}=\sqrt{\frac{1-y^{2}}{1-x^{2}}}$ and that $y=\frac{\sqrt{3}}{2}$ when $x=\frac{1}{2}$, show that $2 y=x \sqrt{k}+\sqrt{1-x^{2}}$ where k is a constant to be found.
